Bidirectional deep echo state networks
نویسندگان
چکیده
We propose a deep architecture for the classification of multivariate time series. By means of a recurrent and untrained reservoir we generate a vectorial representation that embeds temporal relationships in the data. To improve the memorization capability, we implement a bidirectional reservoir, whose last state captures also past dependencies in the input. We apply dimensionality reduction to the final reservoir states to obtain compressed fixed size representations of the time series. These are subsequently fed into a deep feedforward network trained to perform the final classification. We test our architecture on benchmark datasets and on a real-world use-case of blood samples classification. Results show that our method performs better than a standard echo state network and, at the same time, achieves results comparable to a fully-trained recurrent network, but with a faster training.
منابع مشابه
Deep Echo State Network (DeepESN): A Brief Survey
The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed...
متن کاملDeep-ESN: A Multiple Projection-encoding Hierarchical Reservoir Computing Framework
As an efficient recurrent neural network (RNN) model, reservoir computing (RC) models, such as Echo State Networks, have attracted widespread attention in the last decade. However, while they have had great success with time series data [1], [2], many time series have a multiscale structure, which a single-hidden-layer RC model may have difficulty capturing. In this paper, we propose a novel hi...
متن کاملDeep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction
Short-term traffic forecasting based on deep learning methods, especially long-term short memory (LSTM) neural networks, received much attention in recent years. However, the potential of deep learning methods is far from being fully exploited in terms of the depth of the architecture, the spatial scale of the prediction area, and the prediction power of spatial-temporal data. In this paper, a ...
متن کاملDeep belief echo-state network and its application to time series prediction
Deep belief network (DBN) has attracted many attentions in time series prediction. However, the DBNbased methods fail to provide favorable prediction results due to the congenital defects of the backpropagation method, such as slow convergence and local optimum. To address the problems, we propose a deep belief echo-state network (DBEN) for time series prediction. In the new architecture, DBN i...
متن کاملDeep Echo State Networks for Diagnosis of Parkinson's Disease
In this paper, we introduce a novel approach for diagnosis of Parkinson’s Disease (PD) based on deep Echo State Networks (ESNs). The identification of PD is performed by analyzing the whole time-series collected from a tablet device during the sketching of spiral tests, without the need for feature extraction and data preprocessing. We evaluated the proposed approach on a public dataset of spir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.06509 شماره
صفحات -
تاریخ انتشار 2017